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Abstract— This paper presents an image-based approach to
simultaneously estimate the lateral position of a powered-two
wheeled vehicle on the road, its steering behavior and predict
the road curvature ahead of the motorcycle. This work is
based on the inverse perspective mapping technique combined
with a road lanes detection algorithm capable of detecting
straight and curved lanes. Then, a clothoid model is used to
extract pertinent information from the detected road markers.
Finally, the performance of the proposed approach is illustrated
through simulations carried out with the well-known motorcycle
simulator ”BikeSim”. The results are very promising since
the algorithm is capable of estimating, in real time, the road
geometry and the vehicle location with a better accuracy than
the one given by the commercial GPS.

I. INTRODUCTION

Nowadays, the transport of people and merchandise is
a major concern in our societies. The transportation us-
age is constantly changing with new technologies. Even if
new generation of vehicles is emerging on the market like
autonomous cars, Powered Two-Wheeled Vehicles (P2WV)
still stay as the most popular around the world. In high-
income countries, motorcycles are considered more as luxury
goods whereas in low and middle-income regions they are
an essential means of transportation. This is due to their
affordable price and their low fuel consumption. In addition,
their handling capabilities and their compact design allow
riders to easily escape the traffic jams and to ride on any kind
of road where the use of Powered Four-Wheeled Vehicles
(P4WV) is sometimes impossible.

Although, the use of P2WV is different from one country
to another, the road accidents involving motorcycle users
is a global matter. For example, during the year 2016, the
U.S. Department of Transportation National Highway Traf-
fic Safety Administration (NHTSA) reported 37461 people
killed in crashes on U.S. roads including 5286 motorcyclists
[1]. According to these statistics the global number of road
accidents and related fatalities is quasi-stable for several
years except for P2WV where the number of motorcyclist
fatality counts is the highest since 2008. Paradoxically,
P2WV represented less than 1% of the total travel distance
including all kind of vehicles, around 3% of the registered
vehicles against 14% of all road deaths and around of 90 000
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motorcyclists injured. All these figures explicitly highlight
that P2WV users are the most vulnerable road users in the
US. Unfortunately, this finding is the same for many areas
and much worse in several countries like Malaysia where
more than 50% of the road deaths are motocyclists.

In most of the vehicles crashes, investigations have shown
that loss of control often happened and for most of them,
they are due to inappropriate driver action. That is why
during the last decades, the development of Advance Driver
Assistance Systems (ADAS) was a priority in automotive
industry. It has largely contributed to decreasing the number
of fatal accidents while increasing comfort in our vehicles.
Nevertheless, the development of Advance Rider Assistance
Systems (ARAS) dedicated to P2WV did not follow the
same growth even if few solutions currently exist on the
market for premium motorcycles. The cost of such systems,
the high complexity of motorcycle dynamics, the integration
constrains due to the compact design are some of the reasons
that slow down their development. Indeed, P4WV and P2WV
dynamics are different because of the large roll motion and
the extreme load transfer phenomena. Hence, it requires the
development of specific ARAS for motorcycles.

Negotiating a turn when riding a motorcycle can be very
tricky for a novice rider. When approaching a curve, he
must follow a safe trajectory by adapting the speed and
acting on the handlebar to properly lean the vehicle. A
slight mistake often leads to a crash. Even for experienced
riders the curves can be dangerous because of the road
infrastructure defaults or the environment conditions (sandy
road, friction changes, pothole, etc.). In [2], authors studied
the effect of horizontal curvature on P2WV accidents along
rural highways. This study clearly shows that the horizontal
road geometry impacts the frequency and the severity of
P2WV crashes. Among the most significant factors, the
authors mentioned the radius of the curve and its length.
In [3], a similar study has been carried out in UK. The
statistics show that the curve accidents represent around 15%
of all motorcycle fatalities and riders involved in this type
of accident are nearly three times less experienced.

All these findings highlight that adequate ARAS could
undoubtedly decrease the number of accidents in turns be-
cause they are mainly due to riding action errors. The current
work aims to address this concern and propose a method
to simultaneously estimate the motorcycle lateral position,
its heading angle relative to the road and predict the road
curvature at a look ahead distance of the vehicle. Moreover,
the solution is very affordable since it only requires two basic
sensors which are a simple monocular camera and an Inertial



Measurement Unit (IMU).
This paper is organized as follows. Section 2 presents the

motivations and defines the problem. The inverse perspective
mapping technique and the road marker filtering is addressed
in section 3. Whereas in section 4, we will discuss the algo-
rithm performing the road curvature prediction, the P2WV
lateral position and heading estimation. Then in section 5,
simulation results of carried out with the motorcycle simula-
tor BikeSim are discussed. Finally, concluding remarks are
summarized in section 6.

II. MOTIVATION AND PROBLEM STATEMENT

Since the recent progress in computing capabilities of
vehicle electronic control unit and in the embedded network
speed (CAN, Ethernet, etc.), Computer Vision (CV) algo-
rithms have been largely used in ADAS. They deal with
a wide range of applications such that the lane keeping
assist systems [4], the obstacle detection [5], the parking
assistance, etc. Other works have addressed the estimation
of the vehicle dynamics as in [6] were the authors used
vision to estimate the vehicle Euler angles. Finaly, soon,
cameras could replace most of the embedded sensors such
that gyroscopes, accelerometers, wheel speed sensors, etc.
Although the CV research community working on P4WV is
very active, only few works deal with motorcycle applica-
tions. In [7], the authors introduced a smartphone-based rider
assistance system to detect obstacles ahead of a scooter. In
[8], [9], [10], the authors proposed similar works inspired by
the Simultaneous Localization And Mapping (SLAM) tech-
nique to reconstruct the motorcycle trajectory and estimate
the camera egomotion. In [11], [12], the authors introduced
a method and its validation to estimate the roll angle with a
monocular camera. All these works demonstrate that camera
turns out to be a very important sensor in the development
of ADAS and ARAS. Indeed, the camera allows one to get
simultaneous information about the vehicle location in its
environment and its dynamics (speed, orientation, etc.).

This work proposes a vision-based method to contribute
to the development of ARAS. Note that only the estimation
part is addressed in this paper. To fully design an ARAS this
work needs to be completed with risk function design and
a rider alert interface for passive safety systems such as a
Human-Machine Interface (HMI) or a vibrating handlebar.
In case of semi-active and active system design, the passive
solution must be completed with actuators and adequate
control algorithms. The proposed solution is based on a
simple hardware architecture regarding the objectives which
are to simultaneously predict the road geometry, estimate the
lateral position and the steering behavior of the P2WV on
the road. It uses only two basic sensors, namely a simple
monocular camera and an Inertial Measurement Unit (IMU).
Note that the estimation accuracy directly depends on the
camera resolution and the quality of the road markers but in
general the results are much more precise than those given
by a common GPS.

Estimates of the three pieces of information are crucial
when approaching a curve. The driver needs to adapt the

speed and the motorcycle position on the road to properly
negociate the turn. In [13], a P2WV curve warning system
was proposed for the first time. It continuously computes the
ideal maneuver from the actual state to detect dangerous situ-
ations. Nevertheless, the method requires exact knowledge of
the road map of and the accurate position of the motorcycle.
These assumptions are very restrictive because even if we
consider a world road map is available, equip a commercial
motorcycle with an affordable and accurate GPS is very
difficult. In this paper, we propose a solution which bypasses
these requirements by using the inverse perspective mapping
(IPM) technique. It computes a Bird-Eye-View (BEV) of a
given frame. Furthermore, the perceptive effect coming from
the camera projective transformation is removed, making the
geometric properties of the road markers easily identibiable.
This method is largely used in various kind of automotive
applications. Note that all the algorithms proposed for P4WV
can not be extended to P2WV because none of them takes
into account the roll motion which is vital when considering
motorcycles. In this context, we can cite many works dealing
with P2WV roll angle estimation: [14], [15], [16], [17].
In [7], the author used the IPM approach to synthesize an
obstacle detection algorithm for P2WV with a smart-phone.
Nevertheless, due to limited computing power of the device,
the IPM is approximated requiring a look up table and a
calibration step. Consequently, this method is approximate
since it depends on the look up table accuracy and how the
user places the smart-phone on the motorcycle. In [18], the
author proposed an observer to estimate the road curvature
for P2WV. Nevertheless, the solution is only able to estimate
the road curvature at the actual state and has not been tested
on a simulator or on real data.

The main contribution of this work is the development of a
vision-based algorithm allowing the simultaneous prediction
and estimation of crucial information for ARAS design.
These information are the road curvature, the vehicle lateral
position on the road and the vehicle steering behavior.
The latter corresponds to the relative yaw motion between
the road and the vehicle trajectories and easily allows the
detection of over or under-steering behavior. The algorithm
is able to predict the road curvature around 30 m ahead of
the vehicle. This means that for a passive alert system at 50
km/h the rider has more than 2 seconds to react whereas at
100 km/h he has around 1 second. Of course, this algorithm
could be used in more advance active and semi-active safety
systems too. Although an accurate map of the road combined
with a high-performance GPS could give similar information
as in [13], the proposed solution is much more affordable
since it requires only low cost sensors. In addition, it does
not require any vehicle or tire model as in [18].

III. INVERSE PERSPECTIVE MAPPING AND LANE
DETECTION

A. Inverse perspective mapping

The Inverse Perspective Mapping (IPM) aims to create a
Bird’s-Eye-View (BEV) image of the road as depicted in
step 1 on Figure 1. Let us consider a conventional camera



attached to frame Fc. Its intrinsic parameters are given by
the calibration matrix K whereas its extrinsic ones are given
by the rotation matrix R ∈ SO(3) and the translation vector
t ∈ R3. For the sake of simplicity, the camera distortions
are not considered nevertheless one can note that distortion
parameters can be obtained after camera calibration. Let
P be a 3D point with homogeneous coordinates Pw =
(X Y Z 1)

> in the world frame Fw . The image formation
of the 3D point P is obtained through its projection into the
2D point of homogeneous coordinates p = (u v 1)

> in the
image plane Fi. The projection equation is given by:

p ∝ K
(
R t

)
Pw (1)

where ∝ denotes the equality up to scale.
The camera calibration matrix K is given by:

K =

fu 0 u0
0 fv v0
0 0 1

 (2)

where u0 and v0 are the pixel coordinates of the principal
point. fu and fv are the horizontal and vertical focal lengths
which can be expressed in terms of the horizontal and
vertical field of view (FOV) respectively denoted FOVu
and FOVv such that fu = u0 tan−1(FOVu/2) and fv =
v0 tan−1(FOVv/2). As for distortion, these intrinsic param-
eters can be obtained after a calibration step.

As discussed in the previous section, the IPM is a common
technique used to get a top-view image of an input frame. In
other words the IPM creates a virtual camera removing the
perspective effect coming from equation (1). Let us consider
a point p with homogeneous coordinates p = (u v 1)

>

belonging to an input image I . The IPM transforms p into a
new point p′ of homogeneous coordinates p′ = (u′ v′ 1)

>

in the BEV image I ′. The transformation equation is given
by:

p′ ∝ Gp (3)

where G is the collineation matrix ensuring the IPM trans-
formation from I to I ′. G can be expressed in terms of the
intrinsic matrix K and the Euclidean homography matrix
H ∈ SL(3) related to a planar viewed object. Note that H
depends on the rotation matrix R and the translation vector
t corresponding to the rigid transformation between the real
camera pose providing the image I and the virtual one where
I ′ is generated. The homography matrix can be computed
using the following equation [19]:

H = R +
1

d
t n> (4)

where n is the normal vector to the planar object, the road in
our case, expressed in the virtual camera frame. Whereas d is
the distance between the plane and the virtual camera frame
center. In case of the IPM transformation, n = (0 0 1)

>

and d is fixed with respect to the defined Region Of Interest
(ROI) of the BEV image.

In the context of this work, the real camera is rigidly fixed
on the P2WV main body and not affected by the steering
motion. We assume that the camera pitch and roll angles are

denoted respectively by µ and φ. Let us consider these are
measured by means of an IMU installed on the camera. Note
that µ = µ0+δµ, with µ0 is the camera mounting pitch angle
and δµ is the pitch variation. Moreover, hc = zc cos(φ) is the
camera height above the ground level, with zc is the camera
mounting height. Note that µ0 and zc are obtained when
φ = 0◦. The relative yaw angle between the vehicle and the
road trajectory can not be measured since, in our case, the
road map is not available. Nevertheless, they are supposed
to be the very close since the rider follows the road. But in
case of over or under-steering regarding the road curvature,
it results in a BEV image rotation around its virtual optical
axis (Z-axis) which is perpendicular to the ground and does
not impact the algorithm derived in the next section. Finally,
the rotation matrix R is given by R = RcRφRµ with Rc

the fixed rotation matrix to align the camera Z-axis with the
longitudinal X-axis of the vehicle coordinate system. Rφ

and Rµ are the rotation matrices respectively associated to
the roll and pitch motions. Their expressions are given by:

Rc =

0 −1 0
0 0 −1
1 0 0

 , Rφ =

1 0 0
0 cos(φ) − sin(φ)
0 sin(φ) cos(φ)


and Rµ =

 cos(µ) 0 sin(µ)
0 1 0

− sin(µ) 0 cos(µ)


Under the assumptions given above, the IPM transforma-

tion based on the collineation matrix G depends only on
rotation matrices Rφ and Rµ, the camera calibration matrix
K (depending on the selected ROI and the output resolution)
and its height hc. In what follows, to facilitate the filtering
and fitting steps we will assume that the BEV image I ′ is of
size (m×n) since the original image I is of size (n×m). The
ROI is defined by its top-left and the bottom-right points of
coordinates (Xmax, Ymax) and (Xmin, Ymin) in the vehicle
frame Fv (see Figure 1).

The coordinates of p given in equation (3) can be rewritten
as follows:

u =
(−fusφ sµ + u0cµ)X−fucφY + (fusφcµ + u0sµ)Z

cµX + sµZ

v =
(−fvcφ sµ + v0cµ)X + fvsφY + (fvcφcµ + v0sµ)Z

cµX + sµZ
(5)

with X = Xmax−u′Xmax−Xmin

m , Y = Ymax−v′ Ymax−Ymin

n
and Z = hc. For the sake of simplicity, the notations s� and
c� denote respectively sin(�) and cos(�).

In other words, the BEV image I ′ is obtained by warping
each point in I ′ onto I using the inverse mapping G−1 and
then the image intensity is computed by interpolating the
local pixels intensities in the origin image I . An example of
BEV image is shown in Figure 1.

B. Road markers detection

This section addresses the road markers filtering which
is divided into 2 main steps. The first one consists of the
detection of raw lane markers and returns a binary image



(steps 2 to 4 shown in Figure 1). The second step separates
the road lanes (step 5 in Figure 1) using a sliding window
technique.

The road marker detection has been widely addressed in
the past years. In this work, we use the method initially
introduced in [20] and revisited in [21]. This algorithm is
based on the intensity contrast between the road lane mark-
ers and their surroundings. It allows the detection of both
straight and curved road lanes and requires less computer
resources than other method like those using the well-known
RANSAC. Moreover, this method turns out to be a very
appropriate solution to detect the road lanes on a BEV image
since it takes into account the line width, denoted w, as
a filtering parameter. Note that the road markers properties
(width, length, etc.) are precisely defined in the road design
specifications. Concretely, the filtered image I ′′1 , as illustrated
in Figure 1, is obtained using the following equation:

I ′′1 (u, v) = 2I ′(u, v)− |I ′(u, v − w) + I ′(u, v + w)|
−|I ′(u, v − w)− I ′(u, v + w)| (6)

As discussed in [20]-[21], this filter is robust against
shadows and road irregularities, such that asphalt resurfacing,
potholes, etc. In addition, it is less prone to errors when
compared to other lane marking detectors in the literature
such as the ones proposed in [22], [23].

After image filtering, the new image I ′′1 is thresholded
and re-filtered to respectively keep only the lane object
and remove the small blobs. In I ′′1 , the previous filter has
amplified the gray intensity contrast between the road marker
nearby white defined by I ′′1 (u, v) = 255 and the rest of
the image close to black I ′′1 (u, v) = 0. Then, applying a
threshold wisely chosen, we can compute a binary image
I ′′2 which aims to keeps only the road lane pixels as true
and the rest as false as illustrated by the step 3 in Figure
1. Although, the first filter was supposed to retain only the
road markers, some white blobs appear on the binary image
I ′′2 due to high gray intensity contrast between other objects
than lanes in I . To cope with this issue, a second filtering
level is applied in order to remove the white blobs. If we
assume that they correspond to small isolated regions of few
white pixels compared to the size of the road markers, it
comes an intuitive and simple filter. It computes the number
of connected white pixels and then erase the white blobs
through an area thresholding. An example of resulting image
is shown in image I ′′ on Figure 1.

Once the binary image of the road lane markers I ′′ is
obtained, we aim separate the lanes (left, center and right in
our case). To that end, a sliding window algorithm is used to
track each lane independently in I ′′. Note that this method is
illustrated by the step 5 on Figure 1 and allows to track both
straight and curved lanes since the windows can horizontally
slide. For each new frame, a first initialization step aims to
detect the pixel position of each lane at the bottom of the
image thanks to the histogram technique. It simply counts the
number of white pixel for each column in the considered area
and allows to place the first corresponding widows. Then, the

same pattern is used to initialize the lateral position of each
new window which is slid regarding the histogram result in
the previous one. The window size is chosen such that its
width does not capture two lanes at the same time and its
height small enough to ensure curved lanes tracking.

At the same time, the image I ′′ is re-scaled and moved
from the image frame coordinate Fi to the vehicle coordinate
system Fv whose origin is the projection of the camera center
on the ground and the X-axis corresponds to the vehicle
longitudinal axis. Indeed, in the BEV images (I ′-I ′′) all the
object distances are expressed in pixel whereas, in our case,
the desired unit is the meter. It means a pixel located at
(u, v) in Fi is moved to (x, y) in Fv such that x = Xmax−
vXmax−Xmin

n et y = Ymax − uYmax−Ymin

m .
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Fig. 1: Five steps to obtain the lane fitting from a captured
frame

A this point, we have a scatter graph in the vehicle
coordinate system Fv for each detected lane which is going
to be the input of the fitting step discussed in the next section.

IV. LATERAL POSITION ESTIMATION AND ROAD
CURVATURE PREDICTION

This section describes an approach to estimate the P2WV
lateral position, its steering behavior and to predict the road
curvature.

Civil engineers have largely adopted and optimized the
clothoid model, also well-known under the name of Euler
spiral, to design road [24]. The clothoid-based design en-
sures smooth transitions between straight and curved lines
helping drivers to track the road lane markers and avoiding
abrupt changes in steering direction. The clothoid is defined
such that the length of the curve l from the curve origin
must be proportional to the curvature. Hence, the following
expression was introduced in the road design literature [25]:

C(l) = C0 + C1l (7)

where C0 and C1 are respectively the initial curvature and
its rate along the curve. Note that C0 = 0 and C1 = 0



correspond to a straight line, C0 6= 0 and C1 = 0 to a
circular curve and C0 6= 0 and C1 6= 0 to a clothoid. This
model is only valid for horizontal curves when the road is
planar, in other words without any elevation. As in [25], if
we consider the heading angle between the road tangent and
the vehicle X-axis (see Figure 2) is small (less than 10◦), the
equation (7) can be approximated in the Cartesian coordinate
system with the expression:

y(x) ≈ Y0 + tan(∆ψ)x+
1

2
C0x

2 +
1

6
C1x

3 (8)

with Y0 the lateral offset, ∆ψ the vehicle relative heading an-
gle to the road trajectory, C0 and C1 the clothoid parameters
introduced in (7). Figure 2 depicts the parameter layout. Most
of the time, the road markers of extra-urban and highway
roads are supposed to be parallel. In this context, if we
consider the right, center and left lanes, their corresponding
models (8) will only differ from their corresponding offsets
Y0 respectively denoted Y0r , Y0c and Y0l .
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Fig. 2: IPM & clothoid model

Then, once each lane is detected by the sliding window
technique in image I ′′, it is approximated by a 3rd order
polynomial function in order to identify the clothoid param-
eters given in equation (8). An example of fitting result is
shown in Figure 1 on image I ′′. As we can see, even if the
approximated third order polynomial curves in green are not
exact they still fit perfectly the road marker shapes. Note that
because of the camera FOV limits and its small mounting tilt
µ0, it introduces a blind spot area in the first few meters in
front of the vehicle (see yellow region in Figure 2). This last
can not be reconstructed in the BEV since it is not captured
by the real camera. That is why we define the minimum
ROI distance Xmin > 0 such that the blind spot area is
not considered in the BEV. Nevertheless, once the lanes are
approximated with the third polynomial functions we can
reconstruct the road lane shapes in the blind spot region since
Xmin is negligible compared to the minimum distance for
significant road trajectory change. In the end, we can estimate
the dynamics at X = 0 m which corresponds to the camera
center projection on the ground.

This section ends the algorithm synthesis which creates
a BEV of a captured frame, filters the road markers and
track them to separate the different lanes. Then, third order
fitting functions allow the identification of the clothoid model
parameters for each tracked lane. The identified parameter
Y0 directly give us the relative motorcycle lateral position
with respect to the considered lane, tan(∆ψ) expresses the
P2WV steering behavior (neutral, over or under-steering), C0

and C1 give information about the horizontal road geometry
forward the vehicle.

V. SIMULATION RESULTS

This section validates the proposed algorithm on various
scenarios using the advanced motorcycle simulator BikeSim.

The progress in vehicle simulator sofware allows to simul-
taneously simulate the complete non-linear vehicle dynamics
and create virtual cameras to test computer vision algorithms.
The recent literature [26], [27] shown it becomes common
to use these advanced simulators like CarSim, CarMaker,
etc. to perform a first validation step. Indeed, these tools
attract more and more interest in the context of ADAS
and ARAS development since they allow to test dangerous
driving scenario without any real risk. In this work, the
simulations have been carried out with BikeSim which is
the motorcycle version of CarSim.

The camera has been virtually installed in front of the
P2WV at a height zc = 1.10 m and mechanically titled
of an angle µ0 = 15◦. Its recording speed is set at
30 fps which is a very basic frame rate for conventional
camera. In the simulations below, the results are compared
between two different standard image sizes, a low resolution
(640x480) and a higher of (1080x720). For both resolutions
the camera vertical and horizontal FOV are respectively
equal to FOVv = 58.4◦ and FOVu = 80◦. The ROI is
chosen large enough to capture the left, center and right
lanes with Ymax = −Ymin = 15 m. As discussed previously
Xmax = 30 m and Xmin = 5 m to respectively let the time
to the rider to react in case of danger and to avoid blind spot
consideration. Note that all the results below are given at X0

which is the projection of the camera center on the ground.
The proposed algorithm was tested under different scenar-

ios and two of them are presented. In these two scenarios, we
assume the road to be planar (no elevation) and at least the
right lane is structured and detectable. For the simulations
below, this lane is considered as the reference since in most
cases it is closer to the P2WV for right-hand drive and it is
a solid lane. Nevertheless, it is utterly possible to consider
the center line or the left one even if it is a dashed lane but
the estimation performances could be degraded.

A. Scenic road

A constant speed scenic road simulation at 100 km/h is
presented first. This scenario simulates an extra-urban road
which is composed of straight lines, several circular turns and
clothoids to ensure smooth connections (see Figure 3). This
kind of scenario is particularly interesting in the development
of ARAS since it is one of the most deadly. This is because



of the ratio between road curvature and speed limits. Indeed,
urban roads can have more aggressive turns but the speed
limit is slower although on a highway the speed limit is faster
but the curve radius are very large. In addition, with its large
roll angles as illustrated in Figure 3, this simulation validates
one of the paper’s contributions, namely the development of
an IPM formulation for leaning vehicles.
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Fig. 3: Scenic road scenario at 100 km/h
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Fig. 4: Scenic road parameter estimations with a (640x480)
camera resolution

Figure 3 depicts the vehicle trajectory along the scenic
road scenario and the corresponding motorcycle roll, yaw and
pitch angles. Whereas Figures 4 and 5 show the estimated
parameters, in red, and the actual ones in of the clothoid
model given in (8) with regard to the right lane. We can see
for both resolutions the estimations are affected by noise
coming from the image processing uncertainties and the
polynomial approximation which are related to the marker
width generally around 20 cm. Nevertheless, as we can
remark between Figure 4 and 5 where the camera resolutions
are respectively (640x480) and (1080x720), increasing the
resolution significantly contribute to reduce the noise. But we
must keep in mind, that an increase in the image resolution
has serious consequences on the computation time.
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Fig. 5: Scenic road parameter estimations with a (1080x720)
camera resolution

B. Double lane change

The Double Lane Change (DLC) is a well-known scenario
in the development of vehicle safety systems since it is an
emergency maneuver for obstacle avoidance.
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Fig. 6: Double lane change scenario at 100 km/h

It is also used to simulate an overtaking scenario. In
addition to test the proposed algorithm on an emergency
riding scenario, this scenario allows to test a very specific
case too. Indeed, the road is straight whereas the vehicle
has a large lateral deviation which is a rare case where the
vehicle trajectory significantly differs from the road route.
Like for the scenic road the riding speed is assumed constant
at 100 km/h. Figure 6.a depicts the P2WV trajectory during
the DLC, the vehicle is initially in a straight trajectory and
suddenly crosses the center lane to avoid an obstacle before
going back to its initial lateral position. Figure 6.b shows
that even if the road shape is straight, a DLC maneuver with
a P2WV highly excites the lateral dynamics.

As for the scenic road, Figures 7 and 8 present the esti-
mation results respectively for a (640x480) and (1080x720)
camera resolution. The estimations are plotted in red whereas
the actual clothoid model parameters are in blue.
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Fig. 7: DLC parameter estimations with a (640x480) camera
resolution
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Fig. 8: DLC parameter estimations with a (1080x720) camera
resolution

As expected, the clothoid parameters C0 and C1 are zero
because of the straight road markers. Moreover, in this
specific case, the P2WV lateral position as depicted in Figure
7.d and 8.d corresponds directly to the DLC trajectory with
a constant offset and the relative heading angle shown in
8.c and 7.c to the absolute vehicle yaw. As for the previous
results, the estimations are affected by noise whose amplitude
decreases when increasing camera resolution. We can re-
mark, for a same resolution, the estimation noise amplitude is
smaller for the DLC than for scenic road scenario. It confirms
that the noise is mainly due to polynomial approximations
and lane detection uncertainties which are higher in curves.

Moreover, it verifies that even if we keep a fixed reference,
the right lane in our case, while the vehicle is on the left road
side the relative lateral position estimation is still accurate.

C. Result discussion

This subsection presents a Root-Mean-Square Error
(RMSE) study which is a well-known technique to contrast
the estimation errors. In Table I, the RMSE is computed
for both camera resolutions ((640x480) and (1080x720))
and both scenarios. Let y(t) be a signal and ŷ(t) its es-
timation, the RMSE expression is given by: RMSE =√

1
n

∑n
i=1(yi(t)− ŷi(t))2. It is proportional to the square

of the estimation error, consequently the lower the RMSE is
the better is the estimation performance.

RMSE

Resolution (640x480) (1080x720)

Scenic Road

C0 [m−1] 2.23e−3 1.04e−3

C1 [m−2] 12.6e−5 5.80e−5

∆ψ [deg] 9.58e−1 4.94e−1

Y0 [m] 8.02e−2 4.30e−2

τ [%] 98.0 202.2

DLC

C0 [m−1] 1.90e−3 0.81e−3

C1 [m−2] 1.08e−4 0.46e−4

∆ψ [deg] 8.12e−1 4.10e−1

Y0 [m] 7.28e−2 3.40e−2

τ [%] 99.8 195

TABLE I: RMSE RESULTS

In Table I, the parameter τ denotes the computation time
performance as the ratio between the total estimation time
and the simulation time at a recording speed of 30 fps.
The simulation was carried out on macOS with a 3.1 GHz
Intel Core i7 CPU. Of course deploying the algorithm on
a real-time OS with optimized image processing toolboxes
could give much better performances but this first study
gives a first idea about the algorithm speed. The results
shows the potential of the proposed algorithm since it is
as of now real-time for a (640x480) resolution even if
the OS is not optimized. Nevertheless, increase the camera
resolution undoubtedly increase the estimation accuracy by
decreasing the noise but it has serious consequences on the
computation time. Roughly speaking, the estimation error is
divided by 2 when the resolution increase from (640x480) to
(1080x720) whereas the computation time is multiplied by
2. Moreover, Table I endorses the fact that even for a low
camera resolution as (640x480), the estimation accuracy is
great. While commercial GPS have an accuracy about one
meter and are not capable of measuring the relative heading
angle with an acceptable precision, our solution provides
P2WV lateral position and relative heading angle estimation,
in real time, with an accuracy respectively about 10 cm and
2-3 degrees.



VI. CONCLUSION

This paper introduced a vision-based algorithm to simul-
taneously estimate the relative P2WV lateral position, its
relative steering behavior (relative yaw angle) to the road
markers, and predict the road curvature forward the motor-
cycle. The proposed solution is based on the well-known
IPM technique which was adapted for leaning vehicles and
a filtering step to keep only the road markers in the BEV im-
age. Sliding windows are then utilized to track independently
each road lanes and finally, third order fitting functions were
used to identify the clothoid model parameters. These last are
the road curvature radius C0, its rate C1, the relative yaw ∆ψ
and the relative lateral position Y0 to the road markers. The
solution has been tested on various test scenarios including
a scenic road and a DLC with two camera resolution of
(640x480) and (1080x720). Furthermore, a RMSE study
shows a great performance of the algorithm. Even for a low
camera resolution of (640x480), the results are much better
than the measures obtained with a common GPS.

Finally, in the context of ARAS development, the main
contributions of this paper is the development of a real-
time vision-based algorithm using only a basic camera and
an IMU to estimate and predict crucial information when
turning. It is able to estimate the P2WV lateral position on
the road and its steering behavior allowing to detect over
or under-steering. Last but not least, the algorithm allows to
predict the road curvature within 30 m ahead of the vehicle
which provides sufficient time to the rider to react in case
of a problem (speeding in curve, etc.). In addition, a specific
formulation of the IPM were introduced in equation (5) for
leaning vehicles.

The discussed results are very promising and open lot of
possibilities about the use of vision in ARAS developments.
The next step will deal with the embedded architecture
design and the algorithm optimization to perform real time
validation on experimental data. In the near future, we would
like to address other steps of ARAS development such that
the risk function and the rider alert system designs. In
addition, the algorithm could be paired with our previous
work on observers to bypass the use of the IMU.
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